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A b s t r a c t  

A complexity measure is proposed for the kinetic models of chemical reactions 
with linear mechanisms. The index is related to the structure of fractional-rational 
kinetic laws for chemical reactions, as well as to the structure of cyclic graphs used 
to describe them. The complexity index is shown to be closely related to the 
detailed hierarchical classification and to the code of linear reaction mechanisms, 
recently introduced. A number of index properties are proved for two- and three- 
reaction routes. They reflect the influence of the various classification criteria, 
such as the number of reaction routes and intermediates, the type, class and sub- 
classes of the mechanism, and the number of intermediates in each reaction route. 
Hierarchical levels of mechanisms with the same complexity (isocomplex mechan- 
isms) are specified. Standard tables are presented with complexity indices for all 
topologically distinct linear reaction mechanisms having one to three reaction 
routes, two to six intermediates, and reversible elementary steps. 

1. I n t r o d u c t i o n  

During the last fifteen to twenty  years, the mechanisms o f  catalytic and non.  

catalytic reactions have been studied, bringing about  significant progress in the theory  

o f  reaction mechanism. Most o f  the catalytic reactions in the homogeneous ,  metal- 

complex,  and enzymatic  catalyses were found not  to be inferior in mechanistic com- 

plexi ty as compared with radical-chain processes. Moreover,  they appear to be much  

more complicated.  Many examples of  complicated mechanisms can be found in the 

li terature [ 1 - 7 ] .  At present,  mult i route  mechanisms (with two to  four reaction 

routes)  involving up to  eight intermediates and up to  twelve e lementary  steps, are 
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widely known to exist even in metal and non-metal assisted heterogeneous catalysis 
[8 -10 ] ,  where the simplest two-step schemes have enjoyed popularity for a long 
time. The existence of many routes and elementary steps is the most important 
general feature of the catalytic and numerous non-catalytic reaction mechanisms. 

Contemporary chemical kinetics and the theory of reaction mechanisms 
exhibit typically not only increasing mechanistic complexity (hypotheses of mechan- 
isms), but also have a considerable number of hypotheses (possible mechanisms 
describing each reaction). The greater mechanistic complexity and the large number 
of hypotheses raise the problem of formalizing and automating the hypothesis- 
generating procedure. The importance of the problem may be grasped from the 
example of conjugated catalytic reactions in which acrylic, propionic, succinic and 
maleic acid esters are prepared from CO and C2H2 in alcoholic solutions of Pd(I) 
complexes [11,12]. The total number of hypotheses, generated on the simplest 
possible assumption that the final product is formed in a single sequence of inter- 
mediates, is 1344! 

The first general theory for generating the maximal number of hypotheses 
was proposed by Sellers [13,14]. It was based on an elegant group-theoretical formal- 
ism. Other approaches to the same problem are also known [8,11,15]. To develop 
an automated procedure for generating all possible hypotheses, and to create a bank 
of mechanisms, however, a convenient coding of mechanisms is needed. 

The mechanism of each complicated reaction contains two kinds of informa- 
tion: chemical (or physicochemical) and topological (or formal-kinetic). The chemical 
information is governed by the type, composition, and properties of intermediates. 
The formal-kinetic information is determined by the number of reaction routes and 
intermediates, as well as by the different ways in which the routes are connected. The 
information that can be extracted from kinetic data is very useful in the preliminary 
selection and discrimination of hypotheses. 

The best way of expressing the formal-kinetic information is by means of 
cyclic graphs, as proposed by Temkin [16]. (In the following, these graphs will be 
called "kinetic graphs".) In the case of mechanisms whose elementary steps incor- 
porate one intermediate on the left-hand side and one on the right-hand side of the 
reaction equation (by Temkin called '~inear mechanisms"), each edge in the cyclic 
graph denotes an elementary step of the reaction mechanism, i.e. for a pair of 
mutually reversible elementary reactions. Each vertex of the kinetic graph corresponds 
to a certain intermediate, while the linearly independent reaction routes are presented 
by graph cycles. 

If the rate of a reverse elementary reaction is zero, then such an edge becomes 
irreversible and uniquely oriented, and is denoted by an arrow in the graph. By using 
such depictions, one arrives at a directed graph (digraph). All products from the 
interactions of intermediates with reagents not participating in the elementary steps 
are depicted by pendant vertices (vertices of degree 1). Nonlinear elementary steps 
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can also be depicted by cyclic graphs where additional "secondary" edges are used [ 17]. 
The nonlinear mechanisms can also be represented by so-called Volpert graphs [18]. 

Cyclic graphs proved to be very useful in the deduction of kinetic laws and in 
the analysis of kinetic data for linear mechanisms. In order to elucidate the connection 
between the graph's structure and the formal-kinetic laws, we have developed general 
principles for the classification and coding of linear mechanisms on the topological 
basis of cyclic graphs [19,20]. Our classification is free from the pitfalls of some 
previous attempts and it develops extensively ideas published elsewhere [21-24] .  
This graph-theoretical approach unites classification and coding with a procedure for 
deriving kinetic laws, and allows us to specify a hierarchy of mechanisms which seems 
to parallel their complexity [25]. The problem of mechanistic complexity and its 
relation to the classification and coding of mechanisms necessitates, however, further 
studies. The successful solution of the problem would be very important in the creation 
of automated systems for chemical kinetics studies. In this paper, we discuss a promising 
approach to the complexity of reaction mechanisms. 

. The classification and coding of chemical reactions with linear 
mechanisms 

The principles of classification and coding recently developed [20] will be 
briefly stated here as a basis for now treating the complexity of reaction mechansims. 
The problem of the classification of linear mechanisms when taking into account 
solely the structural information, is reduced to the classification of kinetic graphs. 
With this purpose in mind, a hierarchical system of criteria is used to construct an 
appropriate linear code. Consider the system of criteria, as well as the code for the 
undirected kinetic graphs (KG) without the so-called pendant vertices (vertices of 
degree 1). Further examples will be given in table 1 and fig. 1. 

(1) Number of reaction routes (KG cycles), M = 1,2, 3 , . . . .  
(2) Number of intermediates (KG vertices), N = 2, 3 , 4 , . . . .  
(3) Type of mechanism (the supergraph structure), S = 0, 1, 2 , . . . .  Here, S 

is the serial number of the so-called supergraph. Each supergraph vertex 
represents a cycle in the initial KG while a pair of the supergraph vertices 
is connected with an edge when the respective KG cycles are joined by 
means of common edge(s), vertex(ices), or a bridge, but not through 
another cycle. 

(4) Class of mechanism defined by the way of connecting two cycles in KG: 
bridging (class A), common vertex (class B), and common edge (class C). 
The classes of KG having more than two cycles are combinations of these 
three elements. 

(5) Number of elements that are common for two cycles. These are the length 
of the bridge connecting two cyclces (the reaction routes), the number of 
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common vertices or edges of the two cycles (the number of common 
intermediates or elementary steps) which determine the subclasses I, V, 
and L, respectively. 

(6) Mutual location of two cycles linked to a third one (subclasses K). 
(7) The number of vertices in each cycle (the number of intermediates in 

each reaction route), N i . 

The notation needed in expressing the classification criteria form a unique 
linear code: 

M - N - S - A I X K  BY C z -NI ,N2,  ,N M 
V , K  L , K  . . . .  

The detailed code actually includes a more detailed class notation which lists the 
connections between the pair of  cycles in an increasing alphabetic order. The codes 
of all undirected kinetic graphs having one to four cycles and two to six vertices are 
given in table 1 (vide infra). 

As an example, consider the mechanism of the conversion of water-vapor 
methane on nickel. It incorporates two independent reaction routes, five intermediates, 
and six elementary steps, as seen from the respective undirected kinetic graph: 

5 

3 

code 2-5  - B - 2 , 4  

The mechanism itself is given by the following scheme: 

1. CH4 + Z  ~ ZCH2 + H2 

2. ZCH2 + HzO g ZCHOH + H2 

3. ZCHOH ~ ZCO+ Hz 

4. ZCO ~ Z + C O  

5. Z + H 2 0  ~ Z O + H 2  

6. Z O + C O  ~ Z + C O 2  

CH4+ H20 = C O + 3 H 2  

C O + H 2 0  = C02 + H2. 

The following intermediates are included: Z is the reaction site on the surface 
of  nickel, assumed to be bivalent; CH2, CHOH, CO and O are chemosorped radicals. 
In the order presented, these intermediates correspond to vertices 1, 3, 4, 5 and 2 
in the kinetic graph, respectively. 



D. Bonchev et al., Complexity index for linear mechanisms 349 

3. Complexity of linear mechanisms. Quantitative estimations 

In formulating hypotheses for the mechanism of a certain complicated reaction, 
as well as in using different procedures for the selection of one out of many hypotheses 
(discrimination of hypotheses), the question arises as to the hierarchy of hypotheses. 
The intuitive principle of simplicity cannot play the role of a device for the selection 
of hypotheses in the case of multiroute reactions because the number of vertices 
and cycles, as well as the ways of linking cycles in the kinetic graph, are already 
variable. Proceeding from linear mechanisms, we examine here a possible approach 
to the construction of a quantitative scale for mechanistic complexity or to the 
selection of a "complexity index". 

3.1. COMPLEXITY OF KINETIC GRAPHS 

The first complexity level of a linear mechanism is obviously related to the 
kinetic graph complexity. The complexity of graphs is a subject of  interest to both 
mathematicians [26-28]  and theoretical chemists [ 2 9 - 3 2 ] ,  who proposed a number 
of numerical quantities called topological indices. Some pitfalls of  these complexity 
measures were soon recognized. Thus, all simple indices are degenerate, i.e. some non- 
isomorphic graphs are characterized by the same numerical value of the topological 
index. 

In chemical graph theory, ways to avoid the degeneracy are usually sought 
by constructing more sophisticated topological indices such as the Bertz index and, 
particularly, the Balaban index [34]. A combined topological index which reflects 
the topological structure of the graph as fully as possible has also been proposed [35]. 
The ultimate unique and relatively simple solution of the problem of how to estimate 
graph complexity is, however, still lacking. For this reason, the complexity of kinetic 
graphs is not explored here as a possible approach to the complexity of chemical 
reactions. 

3.2. COMPLEXITY OF THE KINETIC MODEL 

The second complexity level of  chemical reaction mechanisms is the level of  
the kinetic model reflecting a certain mechanism (or KG). Proceeding from the fact 
that ultimately the mechanistic complexity manifests itself in kinetics, it seems reason- 
able to look for a complexity index that reflects the complexity of the kinetic model. 
Two kinds of kinetic models may be used for this purpose: (a) fractional-rational 
equations for the rate of a route in stationary or quasi-stationary processes with linear 
mechanisms; (b) systems of differential equations describing any kind of mechanism. 

We have proposed the complexity index K based on the fractional-rational 
form of the rate laws for reaction routes [25]. This index is defined as the total 
number of weights (rate constants) for the elementary steps included in the kinetic 
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laws' numerator and denominator for all routes of multiroute reactions. Our choice 
is based on the simple and intuitively evident assumption that the reaction mechanism 
(as well as its kinetic model) will be more complex when it includes more reaction 
routes (independent stoichiometric equations), with more elementary steps and 
reaction intermediates in each route. This change runs also parallel with the increase 
in complexity of the respective kinetic graphs with the increasing number of its 
cycles, edges, and vertices. Moreover, as shown in the next sections, the index proposed 
satisfactorily reflects the enhanced mechanistic complexity (KG) caused by the 
stronger interdependence between reaction routes (KG cycles). Thus, for example, 
the complexity decreases in the following order: routes with common elementary 
step(s), routes with a conunon intermediate, and routes having no common elements 
at all. Finer aspects of this kind are taken into account by our complexity index. 

By reflecting both the formal-kinetic and topological aspects of the reaction 
mechanisms, the complexity index K proposed here certainly cannot take into 
account all complexity features of chemical reactions. Thus, complexity of  the re- 
acting species (the nature of the KG vertices), as well as the different types of  ele- 
mentary reaction steps, such as syntheses, exchange reactions, etc. (the nature of the 
KG edges), are not taken into consideration. However, being related to the kinetic 
graph, these features could be regarded as components of a more sophisticated com- 
plexity measure in addition to the K index. 

In calculating the quantity K, it is convenient to use the Vol 'kens te in-  
Gol'dstein algorithm [36,37] to derive the rate laws for the routes of all catalytic 
and non-catalytic reactions with linear mechanisms. 

The rate of  route p in a reaction with M routes is: 

k < ~ M - 1  

= - C k)  D p k / D  ~ , (1) 
k = O  

where D i is the vertex determinant (the sum of the weights of all trees containing 
this vertex), Cpk is the length of the cycle corresponding to route p (k = 0) or the 
length of the cycles encompassing the k = 0 cycle. The cycle is the product of the 
elementary step's weights constituting the kth cycle; Dek is the base determinant 
of  the subgraph formed after contracting the p k  cycle to a vertex (it is also called 
the algebraic complement of  cycle pk) .  [2"/] is the reagent concentration in vertex i 
(if the substance is a catalyst, active site or zero reagent, then [Xo ] = 1). 

This algorithm is very convenient, particularly for catalytic reactions, since 
if written as eq. (2) it accounts for the material balance with respect to the catalyst: 
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k <~M-1  

= [ K ]  k -- 0 
rp Z N (2)  

Z 
i = 1  

Here, [K] ~ is the total concentration of all catalyst species. In the case of surface 
reactions, [K] ~ = 1. 

The complexity index K is defined by the equation: 

M 

K = M ( N - 1 ) T  a + N  ~ T n (3) 
P P ' 

p = l  

where T ff and T. d are the total numbers of the rate constants in the numerator and 
denominator, respectively, of  the kinetic laws for rp. 

3.3. CALCULATION OF THE SPANNING TREES IN KG 

The calculation of  K is evidently reduced to the calculation of  the KG spanning 
trees and some specific KG subgraphs. General methods are known in graph theory 
for constructing and enumerating spanning trees [38]. Alternatively, in order to 
evaluate the complexity of  bicyclic and tricyclic non-directed graphs, we shall use 
the explicit formulae for the number of KG spanning trees derived earlier [25] ; 

T 2 = N 1 N z - E  2 12 

2 N3 2 2 T 3 = N 1 N 2 N 3 - E12 - E13 N 2 - E23 N 1 - 2E12 El3 E23. 

(4) 

(5) 

Here, Np and Epk denote the number of vertices of cycle p and the number 
of  edges common to cycles p and k, respectively. In deriving eqs. (4) and (5), it is 
assumed that no edge is common to more than two cycles. 

Equation (4) is used in its complete form for class C of the bicyclic KG only 
where cycles 1 and 2 have a common edge E12 :~ 0. E12 = 0, however, for classes 
A and B of  the bicyclic KG, in which the two cycles are connected by a bridge or a 
common vertex, respectively. 

In the case of  tricyclic KG, any connection of type A or B between cycles 
i and j results in Ei] = 0, which greatly simplifies eq. (5). The latter is used in its 
complete form only for the C 3 class out of  the fourteen classes of three-route reaction 
mechanisms. The other thirteen classes [20] are treated by the following simplified 
equations: 
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2 _ 2 
T 3 = N 1 N 2 N 3 - El2 N 3 El3  N 2 (5 ' )  

for classes C 2, BC 2 , and B 2 C 2 , 

2 tt 
r3 = N,  N2 N3 - E,2 N 3 ( 5 )  

for classes AC, BC, A2C, and B2C, 

T 3 = N 1 N 2 g 3 ( 5 ' " )  

for classes A 2, B 2 , AB, A 3 , B 3 , and A2B. 

When dealing with non-directed KGs, it should be borne in mind that the 
number of  spanning trees in vertex i, T/, calculated by eqs. (5) to (5 '" ) ,  is the same 
for every N graph vertex. Hence, the first term in eq. (3) will transform into 

K 1 = M ( N -  1)T d = M N ( N -  1)T. .  (6) 
P 

3.4. DETERMINATION OF THE ALGEBRAIC COMPLEMENTS Dpk IN KG 

The second term in the basic eq. (3) for the complexity index can also be trans- 
formed into: 

M M krnax 

K 2 = N Z T n = Z N  Z Z D k '  P 
p = l  p = l  k = 0  

(7) 

where the factor 2 accounts for the two different directions Cp~ and Cpk in eq. (2). 
It will be shown that the double sum in (7) can be expressed as the number 

of  spanning trees in some specific subgraphs. We will consider in detail bicyclic and 
tricyclic KGs, but  the result can be readily generalized for any cyclic graph. 

3.4.1. Bicyclic kinetic graphs 

The double sum in (7) can be expanded into 

M = 2  1 

p = l  k = 0  

For bicyclic graphs, however, 
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Dp = N k - E  k, Dk= N - E k ,  and D u k =  Dkup = E k .  

Hence, one obtains: 

M = 2  1 

Z Z 
p = l  k = O  

(8) 

3.4.2. Tricyclic kinetic graphs; 

Similarly, the double sum in (7) is expanded into 

M = 3  3 

p = l  k = O  

/)pk = D + D ~ + D ~ +  2 D u ~ +  2 D u ~ + 2 D k u  ~ + 3 D u k u ~  

2 = (N N k - Ep2k) + (N N~ - E~) + (N kN~ - Eke). (9) 

Comparing eqs. (9) and (4), one concludes that in tricyclic graphs the algebraic 
complement of an arbitrary cycle £ and its encompassing cycles equals the number of 
spanning trees in the bicyclic subgraph containing the remaining two cycles p and k: 

3 

Z Suk 
k = 0  

(10) 

For bicyclic graphs, eq. (8) can be interpreted in a similar way: 

1 

Z  k=S 
k = O  

(11) 

These results can easily be generalized for multiroute reaction mechanisms. 
Equations (4) and (5) will also be used to calculate the second term of the complexity 
index K2 for tri- and four-route reaction mechanisms, respectively. 

It should be noted that the number of spanning trees, as defined by eqs. (4) 
and (5), and hence the KG complexity index, can be calculated from their code. The 
latter provides all the information needed, such as the size of all cycles Ni, the type 
of their linking (A, B or C), the number of cycles M, and vertices N. Thus, the KG 
code described in sect. 2 is not only a convenient hierarchical description of these 
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graphs, but is associated directly with their complexity, which is essential in the 
computer handling of linear reaction mechanisms. 

. Standard  tables o f  all topological ly  d i f ferent  l inear reac t ion  
meehans ims  wi th  1, 2 a n d  3 reac t ion  routes  and 2 to 6 i n t e r -  

m e d i a t e s  

The influence of the different kinetic code constituents on the complexity 
index K of linear reaction mechanisms will be considered in detail in sects. 5 and 6. 
Here, we present in fig. 1 and table 2 the codes and complexity indices for all 135 
linear reaction mechanisms having up to six intermediates and 1, 2, and 3 reaction 
routes (5, 24, and 106, respectively). The kinetic graphs presented there are non- 
directed and devoid of pendant vertices (vertices of degree 1), i.e. these linear mechan- 
isms contain reversible elementary steps only and do not contain intermediates that 
are involved only in an equilibrium elementary step. Clearly, each of the presented 
135 mechanisms corresponds to a certain number of mechanisms with irreversible 
steps, as well as to a certain number of mechanisms described by means of a kinetic 
graph with pendant vertices. 

The standard tables will be extended so as to comprise the linear reaction 
mechanisms with four reaction routes in a subsequent publication [40]. The algo- 
rithms used to generate KGs will also be described elsewhere [41]. 

. Some general  re la t ions for  the complex i ty  index of  linear reac t ion  
mechanisms.  T w o - r o u t e  mechan isms  

The complexity indices of two arbitrary graphs K r and K t will be compared 
in this section in order to derive some basic relations concerning the complexity of 
linear reaction mechanisms. 

Proceeding from eqs. (3), (6) and (7), the difference in the complexity indices 
of two such mechanisms can be represented as a sum of two terms: 

A K  = K t - K r = M t N t ( N  t - 1) T t - M r N r ( N  r - 1) T r 

M t K m a  x M r K m a  x 

+ 2 N t Z  Z D t - 2 N "  Z Z D r  pk pk  
p = l  k = O  p = l  k = O  

= A K 1  + AK2. (12) 
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Fig. 1. All the simple connected cyclic graphs (kinetic graphs) 
with 1, 2, and 3 cycles and 2 to 6 vertices expressing all 
topologically distinct linear reaction mechanisms with 1 to 3 
routes and 2 to 6 intermediates. 
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Table 1 

Classification, code and complexity index of the chemical reactions' linear mechanisms 

I. One-route mechanisms 

N Code Index 

1. 1-2 8 
2. 1-3 24 
3. 1-4 56 
4. 1-5 110 
5. 1-6 192 

I1. Two-route mechanisms 

N Code Index N Code Index N Code Index 

C/ass A C/ass B C/ass C 

6. 2-4-A-2,2  128 13. 2 -3-B-2 ,2  72 19. 2-2-C-2, 2 28 
7. 2 -5-A-2 ,3  290 14. 2-4-B-2 ,3  184 20. 2-3-C-2, 3 90 
8. 2 -6-A-2 ,4  552 15. 2 -5-B-2 ,4  380 21. 2-4-C-2 ,4  216 
9. 2 -6 -A-3 ,3  612 16. 2-5-B-3,  3 420 22. 2-4-C-3, 3 240 

10. 2-5-A2-2,2 200 17. 2-6-B-2,5  684 23. 2-5-C-2,5  430 
11. 2-6-A2-2,3 420 18. 2 -6-B-3 ,4  804 24. 2-5-C-3,4  510 
12. 2-6-A3-2, 2 288 25. 2-6-C-2,6  756 

26. 2-6-C-3,5 936 
27. 2-6-C-4, 4 996 
28. 2 - 5 - C : 4 , 4  560 
29. 2-6- C2- 4, 5 1068 

HI. Three-route mechanisms 

N Code Index N Code Index 

TYPE 3- 0 
Class A 2 Class AC 

30. 3 -6-0-Aa~ 0-2, 2, 2 864 37. 3-5 -O-AC-3,2, 2 750 
31. 3 -6-0-A~I 1-2, 2, 2 864 37' 3-6- 0-AC-4, 2, 2 1488 

38. 3 -6-0-AC-3,  3, 2 1590 
C/ass AB 39. 3-6-0-AC-3, 2, 3 1680 

32. 3-5-0-AB-2, 2, 2 600 40. 3-6-0-A~C-3,2, 2 1080 
33. 3-6-0-AB-2,  3, 2 1272 
34. 3-6-0-AB-2,  2, 3 1272 
35. 3-6-0-AB-3,  2, 2 1272 
36. 3-6-0-A2B-2,  2, 2 864 
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Table 1 (continued) 

N Code Index N Code Index 

TYPE 3- 0 
C/ass B 2 C/ass C a 

41. 3-4-0-B2-2 ,  2, 2 384 60. 3-4-0-C2-4,  2, 2 576 
42. 3 -5-0-B 2-2, 2,3 880 61. 3-5-0-C~-5,  2, 2 1180 
43. 3 -5 -0-B ~ -3, 2, 2 880 62. 3- 5- 0- C2-4, 2, 3 1380 
44. 3-6-0-B2-2 ,  2,4 1680 63. 3-6-0-CC~, ~-6, 2, 2 2112 
45. 3-6-0-BB~,~-4,2,2 1680 64. 3-6-0-CC~,a-6, 2, 2 2112 
46. 3 -6 -O-BB~, 2-4, 2, 2 1680 65. 3-6- 0-C2-5, 2, 3 2598 
47. 3 -6-0-Ba-2 ,  3,3 1872 66. 3-6-0-C2-4 ,  2, 4 2700 
48. 3-6-0-B2-3 ,  2, 3 1872 67. 3-6-0-C2-4 ,  3, 3 3072 

68. 3-6-0-CCa-5,  2, 4 2916 

Class BC 

49. 3-4-0-BC-3,  2, 2 480 
50. 3-5-0-BC-4,  2, 2 1030 
51. 3- 5- 0-BC- 3, 3, 2 1100 
52. 3- 5- 0-BC-3, 2, 3 1160 
53. 3-6-0-B~,~ C-5, 2, 2 1896 
54. 3 .6 .0-B~,2C-5,  2, 2 1896 
55. 3-6-0-BC-3,  4, 2 2100 
56. 3-6- 0-BC-4, 3, 2 2190 
56' 3 - 6 - 0- BC-3, 2, 4 2220 
57. 3-6-0-BC-4,  2, 3 2280 
58. 3-6- 0-BC- 3, 3, 3 2472 
59. 3-6-0-BC~-4, 2, 4 2496 

67ass A~ B 

69. 3-5-1-A2B-2,  2, 2 600 
70. 3 -6-1-A2B-3 ,2 ,  2 1272 
71. 3-6-1-A2B-2,  2, 3 1272 
72. 3 -6 -1 -A]B-2 ,  2, 2 864 

Class A 2 C 

73. 3-4- 1-AaC-2, 2, 2 304 
74. 3-5-1-AAC-3,2 ,2  690 
75. 3 -5 -1 -A2C-2 ,2 ,3  750 
76. 3 -6-1-A2C-4 ,2 ,  2 1308 
77. 3 -6-1-A2C-3 ,2 ,  3 1590 
78. 3-6-1-AAC-2,3,  3 1680 
79. 3-5- 1-A]C-2,  2, 2 470 
80. 3 - 6 - 1 - A ] C - 3 , 2 ,  2 990 
81. 3 -6-1-A~C-2 ,2 ,  3 1080 
82. 3 -6 -1 -A]C-2 ,  2, 2 672 

TYPE 3-1 

83. 
84. 
85. 
86. 

87. 
88. 
89. 
90. 

C/ass B s 

3-4-1-B3-2,2,2 384 
3-5- 1-B~-2, 2, 3 880 
3-6-1-B3-2, 2,4 1680 
3-6-1-BS-2 ,3 ,  3 1872 

Class B ~ C 

3_3.1.B2C.2,  2, 2 174 
3_4.1.B2C-3,2 ,  2 444 
3_4_1_BAC_2,2, 3 480 
3_5.1.B2C-4,  2,2 910 
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Table 1 (continued) 

N Code Index N Code Index 

TYPE 3- 1 

C~SS B 2 C Class BC a 

91. 3-5- 1-B2C-2, 2, 4 1030 113. 3-3-1-BC2-2,  2,3 228 
92. 3-5-1-B2C-3,  2, 3 1100 114. 3-4-1-BCa-2,  2,4 576 
93. 3-5- 1-B2C-2, 3, 3 1160 115. 3-4-1-BCa-2,  3, 3 620 
94. 3-6-1-B2C-5,  2, 2 1626 116. 3-5-1-BC2-2,  2, 5 1180 
95. 3-6- 1-/3aC-2, 2, 5 1896 117. 3 -5-1-BC2-2 ,4 ,3  1320 
96. 3-6- 1-B2C-4, 2, 3 2100 118. 3-5-1-BCa-2,  3,4 1380 
97. 3-6- 1-BaC-3, 2, 4 2190 119. 3-5-1-BC2-3,  3, 3 1510 
98. 3-6-1-B2C-2,  3, 4 2280 120. 3-6-1-BC2-2, 2,6 2112 
99. 3-6- 1-B2C-3, 3, 3 2472 121. 3-6- 1-BC2-2, 5, 3 2418 

100. 3-6-1-BaC~-2,  4, 4 2496 122. 3-6-1-BCa-2,  3,5 2598 
123. 3 -6-1-BC2-2 ,4 ,4  2700 

CIassB2 Ca 124. 3-6- 1-BCa-3,4,  3 2982 
101. 3-2- 1-B2C2-2, 2, 2 64 125. 3-6-1-BC2-3 ,3 ,4  3072 
102. 3-3-1-B~C2-2,  3, 2 210 126. 3-5-1-BCC2-2,4,4 1470 
103. 3-4- 1-B2C2-2, 4, 2 504 127. 3-6-1-BCC2-2,4,5 2916 
104. 3-4- 1-B~C2-3, 3, 2 584 128. 3-6-1-BCC2-3,4,4 3300 
105. 3-5-1-B2Ca-2,  5, 2 1000 
106. 3-5- 1-B2C2-3,4, 2 1260 ClassC~ 
107. 3-5-1-B2CC2-3,4,3 1480 129. 3-4- 1-C3-3, 3,3 768 
108. 3-6-1-B~C2-2,  6,2 1752 130. 3-5- 1-C3-3, 3,4 1740 
109. 3-6-1-B2C2-3,  5, 2 2328 131. 3-6-1-C3-3,  3,5 3312 
110. 3-6- 1-B2C2-4,4, 2 2520 132. 3 -6 -1 -C3-3 ,4 ,4  3594 
111. 3-6-1-B~CC~-3,5,3 2490 133. 3-6- 1-Ca C~-4,4 ,4  3744 
112. 3-6- 1-B2C~-4,4,4 3360 
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O 
Fig. 2. A bicyclic kinetic graph in a generalposi- 
tion. p, k stand for the two cycles, while Epk is 
the number of common edges of the two cycles. 

Consider now the complexity of  two-route reaction mechanisms. Let the 
two cycles in the respective kinetic graph be denoted by p and k, respectively. Let 
also the number of  edges common for p and k be denoted by Epk. The influence of  
three classification criteria will be considered. These are the total number of  inter- 
mediates N, the type of  cycle linkage (the class and subclass of  the mechanism), and 
the number of  intermediates in each cycle Np and Ark. Each of these complexity 
factors will be studied as a single variable, i.e. keeping all other factors constant. 

5.1. COMPLEXITY INDEX DEPENDENCE ON THE TOTAL NUMBER OF REACTION 
INTERMEDIATES N 

For the same class and subclass of the kinetic graph, consider the simpler 
case with intermediates whose number increases only in one of  the two reaction 
routes: 

N t = N r + s, N t = N r t r p p' N ~ = N ; c + s .  

Inserting these conditions in eqs. (12), (4), and (8), one arrives at the expression 

A K =  2 s N r ( N  r - 1 ) N ~  + T t ( 2 N  r + s - 1 )  + ( N  r + N rp + N ~ + s )  > 0, (13) 

which is always positive. Therefore, the complexity index of the two-route reaction 
mechansims always increases with increasing total number of reaction intermediates: 

A K  : K ( N  r + s , N , N ~ + s ) - K ( N r ,  N , N ~ )  > O. (13 ' )  

5.2. RELATIVE COMPLEXITY OF CLASSES AND SUBCLASSES 

The initial conditions are now N t N r = N,  N ;  - r -N~,andN~- r = - N~ + s, i.e. the 
complexity of  two classes or subclasses of  KGs is compared for a constant total 
number of  graph vertices, as well as for a constant number of  vertices in one of  the 
two graph cycles. 

Similarly to eq. (13), we derived the expression 



362 D. Bonchev et al., Complexity index for linear mechanisms 

A K =  2 N ( N -  1)[N~. S - ( E t k )  2 + (E~k)2] + 2Ns > O, (14) 

which in its full form manifests the increase in graph complexity of the subclasses 
C L of class C (Eptk > 0, Eprk > 0). The case Epk = 0, Et~ k > 0 refers to the transition 
from class B to class C, while the annulment of both ~Epk and Epk occurs upon the 
transitions between the subclasses A s of  class A, as well as upon the A -+ B transi- 
tion. Therefore, eq. (14) proves the existence of  a definite hierarchy between the 
classes and subclasses for the two-route reaction mechanisms: 

. . .  <XA  <KA<K <Kc<Kc<Xc. (15) 

A 2 A B C 
C 2 

Fig. 3. A sequence of classes and subclasses of bicyciic kinetic graphs (two- 
route reaction mechanisms) ordered according to tbeb increasing comp]e×ity. 

The analysis of eq. (14) also shows that inequality (15) does not extend 
further than the 6'3 subclasses, since for S = 1 the C3 ~ 6'4 transition diminishes 
the complexity index. The two-route reaction mechanisms with four common ele- 
mentary steps are, however, of no practical importance. One can conclude that the 
complexity index K reflects correctly the increase in complexity of the two-route 
mechanisms occurring when the two reaction routes become more interdependent. 

The inspection of  table 1 confirms inequalities (15) with only one exception 
(numbers 18 and 25, AK = 756 - 8 0 4  = - 4 8  < 0) ,which occurs when the initial 
condition Np = N~ is violated and the distribution of intermediates between the two 
routes changes essentially. The latter, however, is regarded as the third factor influ- 
encing the mechanism complexity and it is examined separately. 

5.3. COMPLEXITY INDEX DEPENDENCE ON THE INTERMEDIATES DISTRIBUTION 
BETWEEN THE TWO-REACTION ROUTES 

Proceeding from the conditions N t = N r, class, subclass = const, Np = Np - s, 
N~ = N~ + s, eq. (12) transforms into 

A K =  2 N ( N - 1 ) ( N ~ - N [ c - s ) s .  (16) 

It follows from eq. (16) that for constant other factors, the more even the 
vertex distribution between the two cycles, the more complex is the respective reaction 
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mechanism (e.g. numbers 25 to 27 from table 1 having vertex distribution 2, 6; 3, 5; 
and 4, 4, respectively). Proceeding from the most even distribution N~ = N~, one finds 
the remaining mechanisms to be always less complex: 

AK = K(Np, Ark) - K(Np + s, N k - s) > 0. (16')  

. Some general relations for the complex i ty  index o f  linear reaction 
mechanisms.  Three-route mechanisms 

Denote the three graph cycles in the kinetic graph by p, k, and £, respectively. 
Denote also the number of  edges that are common for the pairs of  cycles by Epk, 
Ep~ , and EkQ , respectively (fig. 4). 

Fig. 4. A tricyclic kinetic graph in a general posi- 
tion. The three cycles are denoted by p, k, and 2, 
while the number of edges common for each 
pair of cycles is denoted by Epk, EpQ, resp. 

The latter have non-zero values in the case of the most complex class C 3 
(fig. 4), while for the remaining thirteen classes, some of these quantities, or all of  
them, equal zero. 

In studying the complexity of  the three-route mechanisms, all factors used as 
classification criteria (or as kinetic code constituents) will be examined. 

6.1. 

6.1.1. 

COMPLEXITY INDEX DEPENDENCE ON THE NUMBER OF REACTION ROUTES 
(GRAPH CYCLES) M 

Consider first the case where the number o f  cycles increases by unity for a 
constant number o f  vertices (intermediates) 

Conditions: M t= 3, M v=  2, N t=  N',  N~ = N~, N~ = N~, N~ = O, N~ >~ 2. 
From (12) one obtains: 

AK = AK1 + AK2 = N ( N - 1 ) ( 3 T t - 2 T  r) 

- - E  ] + 2N[(N~ 1)(Np + Ntc ) - E  2p_~ - E~2 + N N  k p_k2 , (17) 
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A B z 

A BE 

O - O  - 

A C 

A z A C 

A AC 

0 - - 0 - 0 - 0  
A AzC 

A z AB 

A 3 A 2 

B I~C B B C 2 B BC 

C C 2 C BC 2 

C C 3 C B2 E2 

Fig. 5. Generation of the respective classes of two-route mechanisms to the classes 
of three-route reaction mechanisms. The mechanism complexity increases in all 
cases, as follows from eq. (17). 
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but 

T t >  Tr ( T M : 3 ~ >  TM=2) ;  N p > ~ E k + E p Q ,  Nk>~ Epk+ Ek~, NQ>~ NpQ + NkQ. 

Hence, AK~ > 0 and AK2 > 0,i .e.  A K >  0. 
The complexity index always increases for a constant number of intermediates 

in each of the routes of a two-route mechanism when a third route is formed by 
adding a new elemenatry reaction step: 

A K = K ( M , N )  - K ( M - 1 , N ) >  0. (17 ' )  

This general conclusion is illustrated by all possible transitions between the 
respective classes of two- and tricyclic mechanisms in fig. 5. For more detailed 
examples, see table 1 and fig. 1. The A 3, A 2 B  and B 3 classes of three-route mechan- 
isms cannot be generated under the same conditions, but they can be done by adding 
two or more elementary reaction steps (i.e. by also adding one intermediate). 

6.1.2. The number  o f  reaction routes as a factor more strongly affecting the mechan- 
ism complexi ty  than the number  o f  in termediates 

Fig. 6. Comparison of  two kinetic graphs, the 
second of  which has one cycle more  but one 
vertex less than the first one (or, otherwise,  one 
reaction route more but one intermediate  less). 

Assumpt ions:  M r = 2, M t = 3; N t = N r - I ", N;  = N; ,  N~. = N~ - I, E:tv ~, ,* ,- ~ - , * t  r t r _ g;k.r 

We thus compare the complexity of two mechanisms having two and three routes, 
respectively, but  with the three-route mechanism being one intermediate less than the 
two-route mechanism. 

r N r  A K  = K M r +  1, g r -  1 _ K M , = A K I  + A K 2 .  

From eqs. (12), (4), (5), (8) and (9), one obtains under the assumptions made 
above" 
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2 t t A K :  = 2N  t {[Np(Nk-1 ) - E ~ k  ] + [ N ; ( N ~ - I ) -  (E;~)2] 

+ [Np N~-(E~Q):]  - 1} - 2(N~ + Nk). (18) 

However, N rain = N ]  m i n  = 2, and the respective E e l  = 1. Hence, N i ( N  ] - -  1) - Eli >~ 1, 

NiNi  - El/ ~> 3. Thus, the first term in (18) is K~ = 2N t, A >~ 2Nt .4 .  On th~ other 
_ r +  r r r +  r hand, for M - 2, N~ N/C = N (class A), N~ N• = N r + 1 (class B), and N;  + N• 

= N r + 2 (class C). Hence, the second term in (18) is AK 2" = 2(Npr + N/C)r ~< 2(Nr + 2) 
= 2(N t + 3). From the comparison of AK;  and AK~', it follows that AK 2 < 0. 

AK1 = N t [3(N t - 1) T t - 2(N t + 1) T r ] 

= N t ( R T  t -  S T  r) (19) 

A T  : T t -  r r= N p [ N ~ ( N ~ - I )  - iI 

_ ( E ; k . N  + E  2 t 2 _ E  2 + 2 E k E ~ E k ~ ) .  p~. i ~  + E/¢~. N ~,k (20) 

The fifteen pairs of genetically related two- and three-route mechanisms from 
fig. 5 will be analyzed in detail. 

6.1.2.1. Epk = O,Ep~ = 0, EkQ = 0 (Cases A -* B 2, A:  -* AB, A3 - *  A : ,  with 
N/c, N~ ~> 2, see fig. 2). A T >  0 follows immediately. Np, t 

6.1.2.2. Epk= 0, Ep~ = 0, E k ~ ¢ 0  (Cases A -* A C, A -* BC, B -* BC, and 
A2 -* AC, with Np >i 2, N~ >1 3, N~ ~> 2, as well as cases A -* A2Cand 
B -* B2C, with Np, N~, N~ >>- 2), 

A T =  N [ N ~ ( N ~ - I )  - ( E ~  + 1)1 /> 0, (20')  

where A T = 0 holds for N~ = 2, N~ = 2, Ek~ = 1 only. (Examples: nos. 
7 -* 73, 9 -* 74 (A -* A2C); nos. 14 -87 ,  16-* 88, 18-* 90 (B--* B2C)). 

6.1.2.3. Epk = O, Ep2 4= 0, Ek2 4= 0 (The A -* C 2 case, with Np, N~ >1 2, N~ i> 4, 
as well as the B -* BC  2 case, with Np, t >~ N/C~ 2,N~>~ 3) 

A T =  N [ N ~ ( N ~ - 1 ) - 1 ]  - (Ep.2~N~ + E ~ .  N ) .  (20") 

Inserting the minimal Np, N~c, and NQ values in (20 '") ,  together with the 
respective Eq values Epk = Ek~ = 1, one arrives at A T >  0. The inequality 
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becomes stronger when Eli > 1, due to the respective increase in the N e, 
N~, and N~ size. 

6.1.2.4. Epe ~ O, Ep~ : O, EeQ 4= 0 (The C ~ B2C 2 case, with N o ~> 3, Nt~, 
N~>~ 2) 

A T :  N p [ N ~ ( N ~ - I )  - ( E ~  + 1)1 - E2pe(N~-l)" (20 

Here, A T <  0 f o r N  e : N~ : 2 ,  E v e :  Ee~ : 1 (the C-+ B2C 2 cases, 
example nos. 20 ~ 101, 22 ~ 102, 24 ~ 103,26--> 105); A T >  0 other- 
wise. 

6.1.2.5. Epe :/: O, Ep~ --/: O, Ee~ = 0 (The C ~ C 2 and C -~ BC 2 cases, with Np, 
N~ ~> 2, and N~ ~> 4 and 3, respectively. The C-~  B2C 2 case with 
Np = N~ = 2, N~t >~ 2 also belongs here.) 

_ 2 t _  2 A T :  Np[N~(Ng. 1 ) - l l  - (E~eNg.+ Ep~N~ E p e ) . . .  (20 v) 

Here, A T = 0 _ t _ _ for Np - 3, N]~ = N~ - 2, Epe = Ep~ - 1. (Examples: nos. 
22 ~ 113 (the C-+ BC 2 case), 21 ~ 102 (the C ~  B2C 2 case)); A T >  0 
otherwise. 

6.1.2.6. Epk vs O, Ep~ -¢ O, EkQ 4: 0 (The C ~ C 3 case, wi thNp,  N~,N~>~ 3); 
A T > 0 always holds. 

Having obtained the A T estimates in all cases under study, the R and S 
magnitudes from eq. (19) will now be determined. It is easily seen that R > S at 
N t > 5, R = S at N t = 5, and R < S at N t < 5. It can be shown that for R < S, 
A K1 < 0 in the limited number of  cases where &, T ~< + 1. Examples with A T = 1 > 0, 
R < S, and AK1 < 0 are numbers 21 ~ 113, 24 ~ 114 (C -+  B C 2 ) , 2 4 - *  104 
(C -+ B2 C2), 24 -+ 60 ( C ~  C2), etc. Examples with A T = 0 and A T <  0 were given 
ab.ove~ 

Taking into account that zXK2 is always positive, one finds that AK2 over- 
comes the negative AK1 in all cases with A T = + 1. Thus, AK = AK1 + AK2 < 0 
results only in six cases with R < S, three of  them with A T <  0 (numbers 20 ~ 101, 
22 ~ 102, and 24 -+ 103 ( C ~  B2C 2) and the other three with A T =  0 (numbers 
21 ~ 102 (C-~ B2C2), 22 -~ 113 (C-~ BC2), and 14 -+ 87 (B ~ B2C)). We thus 
arrive at the conclusion that for a small total number of  intermediates (N t = 2 or 3), 
this factor is superior to the number of  reaction routes. Vice versa, the number of  
routes is the superior factor for reactions involving more than three intermediates. 
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6.2. COMPLEXITY INDEX DEPENDENCE ON THE TOTAL NUMBER 
OF INTERMEDIATES N 

We consider the simplest case where the total number of intermediates increases 
by unity for a constant number of  reaction routes (M = 3) and number of inter- 
mediates in two of  the three cycles, as well as for a constant type, class, and subclass 
of the reaction mechanism: 

M t = M r = 3, N t = N r + 1 ; x y z = 
S t = S r, ALKBL, KCL, K const, 

N t  = N~ N[= Ny t N~ E t = E~ E t  = E~ E[ = r p ' k' N~ = + 1; pk k' pQ ~, ~ E£Q. 

(i) General expressions for AK = AK1 + AK2 

A K ,  = 3N  r [Nr(T  t -  T r) + (T  t + Tr)] (21) 

Tt+ T r = N N k ( 2 N ~ +  1) - E~k(2N~+ 1) 

- 2 E ~ N k - 2 E ~ N p - 4 E k E ~ E k ~  > 0 (22) 

 XT= T ' -  Tr= W W  k -  E 2 > 0. (23) p k  

Hence, AK1 > 0 always holds. 

A K2 = 2N r ( N  + Nk) 

+ 2 [ N N k  + N N ~ c + N .  N t _ E 2 .  _E2  2 x ~ p_K p~-Ek~] (24) 

AK2 > 0. 

Hence, AK > 0 always holds. 

The complexity of  the three-route reaction mechanisms increases with in- 
creasing total number of  intermediates for constant other factors: 

A K =  K ( N  r + I) - K ( N  r) >~ O. 

6.3 .  C O M P L E X I T Y  I N D E X  D E P E N D E N C E  ON T H E  TYPE O F  M E C H A N I S M  

Here, we consider the change in the complexity index of kinetic graphs 
occurring upon the increase in their serial number from S = 0 to S = 1, the latter 
determining the two types of  three-route reaction mechanisms. 
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GI 
/© 

1 
I 
I 

I 

I 

S=0 5=1 "'@ 
Fig. 7. Schematic description of the kinetic graphs trans- 
formation during the change in the mechanism type. 
The dashed lines connecting cycles p,  k,  and Q denote 
the bridge between the two cycles (class A)or  a common 
vertex (class B) or a common edge(s), (class C). 

As seen from fig. 7, only two pairs of  cycles are joined in the S = 0 case, 
while all three of them do so in the S = 1 case, i.e. the change in the mechanistic 
type implies that an interrelation is involved between the third pair of  reaction routes 
(k - £). The scheme resulting for the transformation of the six classes of type S = 0 
mechanism into the eight classes of type S = 1 mechanism is shown in fig. 8. 

A 2 AB AC B ~ B[ C 2 

A2B A2fi B ~ B2C BTCz BC ~ C 3 

Fig. 8. A scheme showing the transformation of the six classes of 
mechanisms of S = 0 type into the eight classes of S = 1 type. 

All these sixteen transformations are performed for a constant number of  
reaction routes and intermediates, as well as for a constant number of intermediates 
in two or all three reaction routes: 

M t = M r = 3, N t = N r, Ntp = N~,r N;t = N r.k, Etpk = Erpk ~ 0, 

E t = E  r >~0, E r = 0 ,  E~t~>~O,N~=N~+n,  n = 0 , 1  2 
p~ p~ pP. , , . . . 

AK,  = 3 N ( N - 1 ) [ n ( N  N~ - E ~ k  ) - N E ~ -  2 E x  E ~  E;~] 

AK= = 2 N [ n ( N  + Nx) - ( E ~ ) = ] .  

(24) 

(2s) 
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6.3.1. The change in the mechanistic type does not change the mechanism complexity 
( isocomplex mechanisms) 

Assumptions: E ~  = 0, n = 0. Cases AuA --> A 3, A 2 --> A~B, AB-+ A2B, 
B 2 -+ B 3, AC-* A2C, BC-* B2C, C 2 -* BC 2 (fig. 9). 

c2_,c, 

Fig. 9. Illustration of the cases where the change in the mechan- 
ism type from S = 0 to S = 1 does not change the mechanism 
complexity (isocomplex mechanisms). 

All graph transformations shown in fig. 9 do not change the complexity index, 
as follows from eqs. (24) and (25). Mechanisms which have the same complexity 
index will be called isocomplex mechanisms. In the seven cases examined, isocom- 
plexity results from the weak connection (i.e. by a bridge or by a common vertex) 
that is formed between the third pair of  cycles during the transformation that increases 
the serial number (or changes the type) of the kinetic graph from S = 0 to S = 1. 
Other cases of isocomplex mechanisms will be handled in the next subsections. It 
should be noted that a change in the subclass (A -+ A2) of the reaction mechanism 
takes place in the first two examples in fig. 9 in order to meet the condition for a 
constant total number of  intermediates. 

6.3.2. The change in the mechanistic type increases the mechanism complexity 

(iJ n =1. Cases A 2 -> A2B, AB-> B 3, AC-+ B2C, B 2 -+ B2C, BC--> BC 2, 
C 2 -+ C a (see fig. 10). 

(ii) n =2. Case A 2 -+ A2C. 

In proving the inequality AK > 0 in the cases in fig. 10, one should take into 
account that AK2 in eq. (25) is always positive. AKI > 0, which follows immediately 
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A ~ 

AB 

AC 

No,. 

B 2 

BE 

C ~ 

A ~ 

~ 1 --,-i-- ( ~  C 3 
(62-'-130) 

-' ~ ~ ~c (3o---761 

Fig. 10. Illustration of  the cases where the change in the mechanism 
type from S = 0 to 8 = 1 increases the mechanism complexi ty .  
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A~A Q 

A ~ Q 

j z ~  NOS. 

(30--72) 

AB ,#:> "~ A2B (32 --69) 

B 2 ~ : ~  " J 83 (41 ~83) 

AzC (37 --75) 

C• BZC (49-89) 

C ~ ~x~ C 2 (60 --114) B 

Fig. 11. I l lus t ra t ion  o f  the  cases wi th  a change in the mechan ism 
type  related to the  B 2 C ~ class of  react ion mechanisms.  



D. Bonchev et al., Complexity index for linear mechanisms 373 

for five out of  the seven cases examined provided E ~  = 0. In the case o f B  2 -+ B2C 
transformation, the least AK~ estimate is obtained from the conditions Np >1 2, 
N k ~ 2, N~ >i 3, EkQ >~ 1, Epg = Ep~ = 0. The latter is AK~ = 2 > 0. Similarly, for 
C 2 -+ C a transition, where Np ~ 4, N k >1 3, N~ >~ 3; EpQ, Epe, E~  >~ 1, AK1 >~ 5 
is found. 

6.3.3. Some specific cases 

The three transitions to the B2C 2 class (see fig. 11) require more specific 
conditions: 

M r = M r : 3 ,  N t : N  r, N t = N ~  N ~ : N  r Ng=N~ p ' k' + n ,  n = 0 , 1 , 2 ,  

E ~ = 0 ,  E ~ Q > 0 ,  Etpk = E£~' E tp~ = O, E rp~ >~ O, 

from which one obtains: 

AK~ = 3 N ( N - 1 ) { n [ N N k - ( E ; k )  2] + Nk(E~r~)2-N(E~)2  } (26) 

AK2 = 2 N [ n ( N  + Nk) + (E~Q) 2 -  ( E ~ ) 2 ] .  (27) 

Here, AK2 t> 0, where the equality holds for n = 0, Ep~ = Et~ ~ only 
(C 2 -+ B2C 2 transition). AKI < 0 for n = 0, Nk(E~Q) 2 < Np(E~) 2 . Examples: 
numbers 60 -+ 103, 62 -+ 106,66 -+ 110 from table 1. AK1 < 0 also in some peculiar 
cases with n > 0 and E ~  >> E ~  (examples: BC-+ B: C 2 and C 2 ~ B2 C 2 transitions, 
with Np = N k = t t r 4, Et~ k = 1, E~Q = 3, E£~ = 0 or 1, respectively). A conclusion may 
be drawn that the change in the type of  reaction mechanism from S = 0 to S = 1 
almost always increases the mechanism complexity in the case of  BC ~ B2 C 2 and 
A C -+ B2 C 2 transitions, while in the case of  C 2 -+ B2 C 2 transitions, the complexity 
most frequently decreases. 

6.4. COMPLEXITY INDEX DEPENDENCE ON THE MECHANISM CLASS 

The dependence is examined by keeping constant the number of  reaction 
routes and intermediates, the type and subclass of  mechanism, as well as the number 
of  intermediates in two out of  the three routes. The single exception to the latter 
condition, related to the B2 C 2 class, will be specifically dealt with later. In dealing 
with the G r ~ G t graph transformation under the above conditions, one can order 
the fourteen classes of  tricyclic kinetic graphs into two sequences referring to the 
two types of  mechanisms: those with serial numbers S = 0 and S = 1, respectively. 
These sequences can be regarded as genetic lines of  the classes generating them from 
the preceding class in the sequence by replacing some of  the class symbols A or B 
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S = O :  

A C  / ",,, 
A 2"~- AB BC ~ C 2 

: ~C ~ BC 2 ~ C 3 
"x a' / "¢ 

Fig. 12. Sequences of increasing complexity of the 
mechanism classes for the same mechanism type 
( 8  = 0 or  S = 1) .  

by another class symbol of  higher complexity (B or C, respectively). The ordered 
sequences of  expected increasing class complexities were thus constructed (see fig. 12). 

The second sequence includes the A 3 class in its A2 a subclass because A] = A 3 
is non-existent (a fourth cycle is formed when bridges of  zero length connect the 
three cycles p, k, and £). 

In proving the complexity relationships between different classes of reaction 
mechanisms, we proceed from the following conditions: N r = N t, S = const (0 or 1), 
the sublass index L = const; N~ = N~, N~ = N~, N~ t = N~ + s, where s = 2 for the 
A~ ~ A2B case and s = 1 otherwise; (a) E~k = t r - yp~, "-'k~ - "-'~ n, where 
n = 0 in the case of  A 2 -~ AB,  A B  ~ B 2, A] -~ A ' B ,  AaB --). B 3, A C ~  BC, and 
A2 C  -). B2C transforrfiations, while n = I for A B  -~ AC, B 2 ~ BC, A2B -~ A2C, 
B 3 -)" B2C, B C  ~ C a , B2C  ~ B C  a, and B C  2 ~ C 3 cases (see fig. 13). When the 
cycle increasing its number of vertices does not-form a new edge with another cycle 
(all cases with n = I but  with different cycle notations), the last part of  the above 
conditions must be modified as follows: (b) E;~ = E~ ,  E;~ = E ~ ;  E;~ = 0, Etk = 1 
(see fig. 14). Each of  the classes is represented in figs. 13 and 14 by the least possible 
number of  intermediates. 

Under these conditions, the following equations result: 

6.4.1. 

AK~ = 3 N ( N - 1 ) { ( N p N ~ - E p k ) s +  ( E ~ - E [ ~ ) [ ( E ~ Q  + E~Q)N + 2EkEp~]} (28) 

AK2 = 2 N [ ( N  + Nk)s  + (E  r ~2 _ (E~)2 ] 
k~J (29) 

6.4.1.1. n = 0, E'~Q = E ~  (AX ,  BY ,  C~ + A X 2 B Y 2 C ~ ) c a s e s ,  w i t h X 2  < X I ,  

Y2 > YI :A 2 ~ AB,  A B  + B 2 , A C  L + B C  L. A~ + A2B, A 2B  + B 3, 
A=C L ~ B2CL (fig. 13), where L = 1,2,  3 . . . .  
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S=O f 3  

A2 ~ ~Z~ ~ ~ AB 

A B cCZ~ c C ~ C ~  ~ c ~ ~  B ~ 

~ C ~  

~ BC AC c C ~  

B~ ~ ~ ~ BC .n =1 

A 2 

- o  9 

A2B 

B 3 .n--0 

B2C 

A2[ 

BzC 

n=l  

BC z 

C ~ 

Fig. 13. Illustration o f  the cases where the change in 
the mechanism class increases its complexi ty .  In all 
the cases with n = 1, the cycle increasing its number  
o f  vertices forms a new edge with another  cycle. 

Nos. 

31 -- 34 

32--&2 

37 -- 52 

32 -- 37 

t,1 ~ 49 

t.9 ~ 60 

69 -- 8/* 

73 ---89 

69 --75 

83~ 89 

87 ~113 

115 --129 
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AB 

B ~ 

B[  

S = 0 NOS. 

AC 35 ~ 38 

Bc 43 - -  Sl 

b C 2 50 ~ 62 

AZB 

B 3 

BZC 

BC 2 

Q I 
S = I  

A C 69 ~ 74 

B~ c 83 ~ 88 

BE 2 89 ~ 115 

C 3 119 ~ 130 

Fig. 14. The second group of cases in which the 
change in the mechanism class increases its com- 
plexity. The cycle increasing its number of vertices 
does not form a new edge with another cycle. 
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6.4.1.2. 

A K =  3 N ( N - 1 ) ( N N k - E ~ k ) s +  2 N ( N  + Nk)s > O. (30) 

n = 1 , E ~  : E~Q + 1 ( A X B Y I C  z '  -+ A X B Y ~ C  z2 cases, with Y2 < Y1, 
Z2 > ZI : A B  -+ AC, B 2 ~ BC, BC z ~ C~, AZB-+ A2C, B 3 ~ B2C, 
B2CL ~ BC~, BC~ ~ C~, where L = 1 , 2 , 3 , . . . ) . I n s p e c t i o n  of fig. 13 
shows that in all seven cases with n = 1, E ~  = 0, E ~  = 1. Hence 

AK2 : 2 N ( N + N  k - l )  > 0 

A K ,  : 3 N ( N - 1 ) [ N ( N k - 1  ) - E k ( E g  + 2EQ)] .  

(31) 

(32) 

&K1 = 3 N ( N - 1 ) . N ( N k - 1 )  ?> 

In the case of BC --> C 2 , with Epk 

O. (33) 

> O, EpQ = O, 

AK1 : 3 N ( N - 1 ) ( N  + N Q -  1 - E ~ k  ) > 0. (33')  

For BC~ -+ C~, the full eq. (32) should be used. The least AK1 value is ob- 
tained for Epk = Ep~ = L,  where L = 1,2, 3 , . . .  : 

AK1 ~> 3 X ( X - 1 ) [ N ( N  k - a ) - 3 L 2 ] .  

Taking into account that in this case Np >~ 2L + 1, N k >~ 2L for L = 2, 3 , . . .  and 
N k = 2L + 1 = 3 for L = 1,one gets AK1 >- 3 N ( N - 1 ) ( L  2 - 1 ) >  0 f o r L  =2 ,  and 
AK1 = 9 N ( N  - 1) > 0 for L = 1. Therefore, AK > 0 always holds for the cases 
examined in fig. 13. 

6.4.2. Equation (31) holds also for AK2 

AKx = 3 N ( N - 1 ) ( N  N k - N ~ -  2EpQEkQ). (34) 

Clearly, AK1 > 0 for N p N  k > N ~ -  2Ep~EkQand AK1 < 0when the opposite 
inequality holds. In the latter case, the positive AK2 cannot compensate the negative 
AK~ and AK < 0. One can thus find that the first negative AK appears for 
A2B -+ A2C and B 3 -+ B 2 C a t  Np = N k = 2 , N ~ =  5; for AB-+ AC, B 2 -+ BC, and 
B2C -+ BC 2 a t N p =  2 , U k =  3,A?~ 7 ; f o r B C  2 - + C  3 a t N p = U k  = 3,-X~=S,  and 
for BC-+ C 2 at Np = 2, N k = 4, N~ = 9. Evidently, in all these cases of negative AK 

In the case of Epk = 0 (A B ~ A C, B 2 ~ B C, A 2 B -+ A 2 C, B 3 _~ B 2 C, as well 
as BC -+ C 2 with EpQ > 0), the second termin (32): A = Epk (Epk + 2Ep~) = 0. Hence, 
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the uneveness in the cycle size prevails over the higher hierarchy of the KG class. When 
the cycle sizes do not differ so drastically, AK > 0 always holds. 

One more relation between the mechanism classes is to be examined, which 
requires more specific conditions. 

6.4.3. The B2C 2 -+ BC 2 transition 

N r = N t, S = const, L = const, Np = Alp, N~ = N ~ - I ,  N~ t = N ~ +  1, 
Eprk = Eptk = 0, Ep~ = Ep~ 2 > 0, E~Q = E~Q. The latter three equalities imply that the 
~2 cycle is always positioned between p and k. 

Equation (35) thus produces 

(~k P ~  Nos. B2£ 2 p - - - . -  BC 2 102--113 

Fig. 15. Illustration of the transition between two 
classes of kinetic graphs, B 2 C  ~ ~ B C  2 , requiring a 
specific location of the three graph cycles p, k, and ~. 

A K = 3 N ( N - 1 ) [ N p ( N 2 - N ~ - I )  + E;~] + 2 N ( N 2 - N ~ - I ) .  (35) 

As seen in fig. 11, N~ ~> N~" - 1 (otherwise k and £ interchange and the same 
relation holds). Hence, AK >~ 3 N ( N -  1)EpQ > 0. We have thus proved the last 
inequality for the hierarchical ordering of the fourteen classes of linear reaction 
mechanisms shown in fig. 12. 

The general conclusion can be made that, with all other factors remaining 
constant, the complexity of  three-route reaction mechanisms increases on replacing 
the equilibrium elementary step connecting two reaction routes by a common inter- 
mediate, as well as when the latter is replaced by a common elementary step. In 
terms of our kinetic graph classification, the complexity of a three-route reaction 
mechanism will increase when A or Bz symbols in the class notation are replaced by 
B, as well as when B is replaced by C: 

K(AX2BY:C Z2) > K(AXIBY~B z` ), 

for X2 < Xl, Y2 > Y1, Z2 = Z1 or Y2 < II1, Z2 > Z1, Xz = X1; and 

I((B C < K(BC ). 
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6-5. COMPLEXITY INDEX DEPENDENCE ON THE MECHANISMS' FIRST SUBCLASS 

6.5.1. The first subclass I o f  elass A x 

As mentioned in sect. 2, the notation A z means that two cycles in the kinetic 
graph are connected by a bridge having I edges or, otherwise, that two reaction routes 
are related through I equilibrium elementary steps. We shall prove that the 
decrease in the first subclass index I increases the complexity index when all other 
factors are kept constant. 

- K ( A I  B C~) > 0 

for 12 < I ,  at N t = N r, S t = S t ; X ,  Y, Z, L = const, N~ : Alp, N~ = N~, N~ : N~ + s, 
s = 1, 2, 3, . . . , E~tk = E;rk, E ~  = Ep~, E~t~ = E~r2. The six classes of the three-route 
mechanisms referring to 6.5.1 are shown in fig. 16. Under these conditions, one 
obtains eq. (30),i.e. AK > 0 always holds. 

S=O 

AB ~ 
2 

c($3o c:CS~ c ~ A  z 

~ Aa 
Nos, 

(36 - -  33) 

(~o - -  38) 

3 

S : 1  

3 
A2 

7 2 7 0  

9 .  
- -  ~ ~c (79--  7~,) 4c Q 

o "  

Fig. 16. Illustration of the six classes of three-route mechanisms in which the 
decrease in the length of the bridge connecting two cycles (or the decrease in the 
first subclass index I) increases the mechanism complexity. 
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6.5.2. The first subclass L o f  class C z 

The subclass notation C L means that two cycles in the kinetic graph have L 
edges in common or, Otherwise, that two reaction routes have L common elementary 
steps. We shall prove that the increase in the first subclass index L increases the 
complexity index with other constant factors influencing the mechanism complexity: 

for Lz > L1 at N t = N r, S t=  St; X, Y, Z, I =const ;  Np = Np, N~ = N~, 
N~ = N~ + 1; Eta  = Eprk, E;~ = Ep~, E~Q = E ~  + 1. 

The seven classes of  the three-route mechanisms referring to 6.5.2 are shown 
in fig. 17. Under these conditions, one obtains: 

AK1 = 3 N ( N - 1 ) [ ( N ( N k - 2 L - 1 )  - E k ( E k  + 2E~) ] .  (36) 

AKz = 2 N ( N  + N k -  2 L -  1), (37) 

where L denotes L1 for the sake of simplicity. Equations (32) and (31) are then 
specific cases of eqs. (36) and (37), respectively, for L = 0. 

In analyzing eqs. (36) and (37), one should take into account that Epk = O, 
EpQ = 0 for A C  L, BC L, A2CL , and B2CL, while for C~ and BC~. classes, two cases 
are possible: Epk = 0, EpQ ;> 0 and, vice versa, Epk > O, EpQ = 0, which correspond 
to different locations of cycle k with respect to p and ~: external and internal loca- 
tions, respectively (figs. 17 and 18). 

Inspection of the seven C z classes in fig. 17 also leads to the conclusion 
about the minimal size of k where preserves the L-subclass: N k ~> 2(L + 1) for 
A2CL , B2CL, as well as for AC L, BC L, BCCL, and CC L with external location 
of cycle k, whale N k >~ L + 3 and N k ~> L + 4 holds for the external location of k 
in the first three and in the fourth class, respectively. Finally, it is also found in the 
C 2C L case t h a t N  k > l L + 3 a n d l V _ > ~ L + 3 ,  

Hence, one obtains for Azt'c and B2C, as well as for AC, BC, C 2 , and BC 2 
with external k, AK1 >~ 3 N ( N -  1)Np > 0, and AK2 >1 2N(Np + 1) > 0. When 
AC, BC, C 2 , and BC 2 classes are regarded with internal k, A K  2 >7 2N(mp + J - L )  

and AK1 = 3 m ( m -  1). [Np(J -  L ) -  Epk ] result (E~k being zero for A C  and BC), 
where J = 2 for the first three classes and J = 3 for the fourth one. We thus reach the 
conclusion that AK > 0 for A C  -+ ACz, BC -+ BCz, AC2 -~AC3, BC2 -+ BC3, 
c 2 C ,andSC -+ BC , while aK < 0for ACa AC4, SCa aC4, -* C l ,  
and BC~ ~ BC~. In the case of  the C~ class (the C2Cn), AK1 >~ 3N(N-1)  [(L + 3) 
(2 - L) - Epk. (Eek + 2EpQ)], AKz > 10N. Takinginto account that [AK~ [ > J AK21, 
one arrives at A K >  0 for C a -," C2 Cz transition, while for C2Cz -+ C2C3, A K  < O. 
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AC 

Be 

C 2 

S--0 

c ~  -, c ~  ,,,<~ AC 2 

~ ~ BC2 

S=I 

Nos. 

52 ~ 59 

66 ~ 68 

A2C ~ ~ ~ A?C~ 

98 ~ 100 

117 ~ 126 

132 ~ 133 

Fig. 17. Illustration of the classes of three-route mechanisms in which 
the increased number of common elementary steps between the reaction 
routes (the increased number of common edges between the kinetic 
graph cycles) increases the mechanism complexity. 
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Bc 

Nos. 

5 7  ~ 59  

65 ~ 68 

BC ~ ~ ~ BCC2 118--1~ 

Fig. 18. Cases similar to those in fig. 17, but requiring a specific location 
of cycle k with respect to cycles p and ~: internal but not external one. 

Once again, the negative AK values are related to a larger difference in the cycle 
sizes, which is another factor influencing the graph complexity. When the cycle 
sizes are kept close in size, the increase in the subclass index L increases the graph 
complexity. In other words, the linear reaction mechanism complexity increases 
with an increasing number of  reaction intermediates that are common for two reaction 
routes, when all other factors affecting the complexity are constant. 

Bringing together all hierarchical relations proved in 6.4 and 6.5, fig. 12 can be 
generalized as shown in fig. (19). 

6.6. COMPLEXITY INDEX DEPENDENCE ON THE MECHANISM'S SECOND SUBCLASS K 
(THE INTERLOCATION OF ~ O  REACTION ROUTES (GRAPH CYCLES) BOTH 
CONNECTED WITH A THIRD ONE) 

Inspection of  table 1 and fig. 1 shows four pairs of  mechanisms differing by 
this subclass index only: numbers 30, 31, class A 2 , subclasses A 21,0 and A 21,1 , re- 
spectively; numbers 45, 46, class B 2, subclasses -BB1,1 and BB1,2, respectively; 
numbers 53, 54, class BC, subclasses BI,1C and B1,2C , respectively; numbers 63, 
64, class C 2 , subclasses CC1,1 and CCI, 2 , respectively. The change in the mutual 
positions of  graph cycles that are linked with a third one (by a bridge, common 
vertex or common edge) does not change any parameter in eq. (8) because this struc- 
tural modification changes neither the number of  vertices in the individual cycles, 
Ni, nor the number of  edges common for a pair of  cycles. Therefore, a conclusion 
can be drawn that the change in the location of  two graph cycles, both linked with a 
third one, does not affect the KG complexity. Two reaction mechanisms, differing 
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S--O: 

A 3 C ~  A2C A C2 - - "  AC3 
\ / 

A3 A -,,,. A2 A ~ A z A C 2 ",, / "x, /c~ 
AB BC ~ C 2 ~  CC 2 - CC 3 

/ ",, / ,,, 
A 3 B ~ A 2 B  B z BC2 ~ BC 3 

/ ,  
A 3 C 2 ~  A2C:~  A C2 

S:1: 

A~C3 
/ 

4 c - - -  ; :  A'c, B'c, Bc ~, 
",, / \ / / 

\ / ",, / / "x 
A2B B2C ~ BC 2 ~ C 3 ~ C z C 2  

/ \ / 
4B - -  48 B~ / 

B2 C2 ~ B2C C 2 ~ B2 C2 

Fig. 19. Generalized sequences of increasing complexity within classes and 
subclasses of reaction mechanisms belonging to the same type S = 0 or S = 1. 

only in the way two of their reaction routes are connected with a third one, are iso- 
complex: 

K(AIXK ' Y C Z ) = K(A~K~ r Z BV, K, L,K 1 BI4K~C~,K2)" 

6.7. COMPLEXITY INDEX DEPENDENCE ON THE REACTION INTERMEDIATE 
DISTRIBUTION OVER THE DIFFERENT REACTION ROUTES 

The influence of  this factor is studied for a constant: number of  reaction 
routes (M t = M r = 3), total number of  intermediates (N  t=  Nr) ,  type of  mechanism 

t r Xl Y1 Z1 X2 ' 1"2 Z2 (S = S ), class and subclasses (A z K B~  K C~,, K = A I 2 , K ; B v  2 K2 Cv2 K2 ) of  
the mechanisms. In order to find wl~ich'kin~'o~ inte~rrn~diate distribution is reiated to 
a greater mechanistic complexity, the more even or the less even one, we have com- 
pared the complexity of  two model mechanisms. The first one has the same number of  
intermediates in each of  the three routes (an even distribution), while the second 
mechanism has a less even intermediate distribution: 
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N t t t =  r r = N / < +  r N ~ - s ,  and s=1 ,2 ,3 ,  p= N ; :  N~ N~, N~ s, N~ : . . .  • 

With this, the following relations hold" E ~  : ECrk ~> 0, E ~  = E ~  ~> 0, E~Q = E ~  ~> O. 
Under this conditions, one obtains" 

A K =  [ M N ( N - 1 ) ( N . s +  E 2 - 2 p~ E~k ) + 2Ns] s. (38) 

AK > 0 in all cases except A = Np. s + Ep~ - Epe < 0, where AK < 0. The 
latter case requires Epk >> Ep~, e.g. at s = 1, AK < 0 for Epk >~ Ep~ + 2 (classes C~ 
and BC~) and Epk >~ Ep~ + 3 (classes BC L and B2CL,  where EpQ = 0). Disregarding 
the case where AK < 0, which refers to some higher subclasses L, one arrives at the 
following conclusion: the more even the intermediate distribution over the different 
reaction routes, the more complex is the reaction mechanism, with all other factors 
influencing the mechanism complexity being held constant. 

A K  = K ( N , N , N )  - K ( N , N  + s , N - s )  > O. 

6.8. COMPLEXITY INDEX DEPENDENCE ON THE NUMBER OF INTERMEDIATES 
IN TWO REACTION ROUTES HAVING A COMMON ELEMENTARY STEP 

Inspecting table 1, one can also extract some mechanism with a constant 
type, class, subclasses, as well as with a constant total number of  intermediates and a 
constant number of  intermediates in each of  the reaction routes N i. The codes of the 
pairs or triplets of  such mechanisms differ by the permutation of the N i values, for 
example, numbers 38, 39 having codes 3-6-0-AC-3,3,2 and 3-6-0-AC-3,2, 3, re- 
spectively. In these cases, the distribution of  the N i values is equally even (or uneven), 
but it is essential which one out of  the three kinetic graph cycles is connected with 
another one by means of a common elementary step. 

To interpret the complexity of such reaction mechanisms, we proceed from the 
f o l l o w i n g c o n d i t i o n s :  N t = N r, S t = S r, A x '  B Y` C Z,  = A X2 I:~Y2 g'Z2 " 

.. I 1 , K ,  V , , K t  L 1 , K I  " " I 2 , K 2 ~ " V 2 , K a ' ~ L a , K a  ' 
N f  = N~,Nto : Nr,  N r :  Nr;E:tL. : r >_ t : t r 

Under these conditions, one obtains AK2 = 0 and 

A K =  AK,  : 3 N ( N - 1 I ( N ' - N . r ~ E  2 - - - - - "  k ~ p k  " 
(39) 

When Epk = 0 (classes A 2, AB,  B 2, A 3, A2B, and B3), AK = 0 and we 
arrive at another level of  isocomplex mechanisms (e.g. numbers 3 3 - 3 5 ,  4 2 - 4 3 ,  
4 4 - 4 6 ,  4 7 - 4 8 ,  7 0 - 7 1 ) .  When Epk > 0 (classes AC, BC, A2C, B2C, and BC2),  
if the pair of  cycles compared are chosen in such a way that N ~ >  N~, then A K > 0 ,  
for example, numbers 3 8 - 3 9 ,  5 1 - 5 2 ,  5 5 - 5 7 ,  7 4 - 7 5 ,  7 7 - 7 8 ,  8 0 - 8 1 ,  8 8 - 8 9 ,  
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117-118, etc. Three classes of kinetic graphs (C 2, B2C 2 , and C a) do not possess 
such pairs or triplets of graphs with permuting N i values, due to the graph sym- 
metries. The following conclusion can be drawn for constant factors: the difference 
in the complexity of  two reaction mechanisms with an interchangeable number of 
intermediates in those two of their reaction routes which have a common edge(s) 
depends on the difference between these two intermediate numbers, as well as on 
the number of common edges that the two routes have: 

A K  = K(Np,  Nk, N~) - K(Np, Nk, N~) >t O. 

7. S o m e  genera l iza t ions  conce rn ing  i socomplex  reac t ion  m e c h a n i s m s  

Several levels of the reaction mechanisms' isocomplexity have been encountered 
in sect. 6. These can be mechanisms of different types (case 6.3.1), of the same type 
and class but of different subclass (case 6.6), as well as of the same class and subclass 
but with a pair of  cycles interchanging their locations (case 6.8). A single case of 
isocomplex mechanisms of different classes and first subclasses was found by inspection 
from table 1: numbers 30, 31-3-6-0-A~, o 2 (AI ,1)-2 ,  2, 2, and number 36-3-6-0-A2B- 
2 , 2 , 2 .  Most of these cases are connected with graph transformations in which a cycle 
that is weakly connected with the other cycles (by a bridge or by a common vertex) 
changes its location only. In some other cases, such a transformation occurs with a 
strongly connected cycle (having a common edge with another cycle). The latter 
transformation is, however, restricted to another edge of the same cycle. All these 
cases can be uniformly treated by the following. 

THEOREM 

Two kinetic graphs G t and G r are isocomplex when they have the same 
number of cycles and vertices, the same number of vertices in the respective pairs 
of cycles, and the same number of common edges between the respective pairs of 
cycles, but differ as to the mutual location of their cycles only: 

for 

K (M r, N r, N~, N~ . . . . .  N~. E~2, E;3 . . . . .  E~_ 1. k) 

= K (M t .  N t . N ( . N ~  . . . . .  N~.E[2.  E(3 . . . . .  E[_l . tc)  

M r= M t . N  r= Nt ,  N (  = N t , N ~ = N  t . . . . .  N ;  = N~, 

E;2 = E[2, E;3 = E[3 . . . . .  E;_  , .k = E l -  1.t¢ " 

Another formulation of the theorem is the following: 
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Two linear reaction mechanisms are isocomplex when they have the same 
number of reaction routes and intermediates, the same number of intermediates in 
the respective pairs of routes, and the same number of elementary steps common 
for the respective pairs of cycles, but differ in the interconnection of the reaction 
routes. 

The proof of the theorem for two- and three-route mechanisms follows 
directly from eqs. (8,5,6,14 and 16), since the only variables they incorporate are 
those specified above as equal for the two kinetic graphs compared. The generaliza- 
tion of  eqs. (6) and (14) to reaction mechanisms with larger numbers of routes does 
not alter this conclusion. Some specific cases of isocomplex mechanisms were proved 
in the preceding sections (see eq. (25), case 6.3.1, case 6.6; eq. (39), case 6.8). 

8. Conc lud ing  remarks  

Today, automated systems for kinetic studies of chemical reactions are being 
developed intensively. The theoretical foundation of such systems is the strategy 
based on the following scheme [42,8,11 ] : constructing hypotheses about the mechan- 
ism -~ planning and testing of hypotheses for chemical and kinetic experiments ~ dis- 
crimination of hypotheses --> mechanisms. 

The classification and coding of mechanisms, as well as the estimate of the 
mechanistic complexity, developed in our work is of importance in each of the kinetic- 
study stages shown in the above scheme. The automation of the procedure for genera- 
ting hypotheses by means of different approaches [8,10,13,14,40,41] requires the 
coding of mechanisms, as well as the organization of a mechanism bank with a con- 
venient system for information retrieval. The coding method we proposed earlier 
allows the automated (with limited intervention by the researcher) hypothesis genera- 
tion to be carried out in parallel with the automated coding. The hypothesis- 
generating procedure is based on the simplicity principle. Because of this, it is justified 
to use the mechanistic hierarchy and to evaluate quantitatively the mechanistic com- 
plexity, as done in the present paper, by means of an appropriate complexity index. 
It is instructive to examine only the "skeletal" schemes which have solely inter- 
mediates, minimum number of elementary reversible steps, and no pendant vertices; 
the examination is done proceding on the assumption of "one sequence elementary 
steps - one product". The hypotheses thus generated can then be gradually made 
more complicated. 

The generated hypotheses can be discriminated through chemical (or physico- 
chemical), kinetic, and mathematical methods. In the discriminating experiments, it 
is important to plan them so as to shed light on the mechanism's topological structure. 
It is necessary to estimate qualitatively the connectivity of the mechanism graph, the 
route location in the graph, the route interconnections, as well as the presence of non- 
linear elementary steps. A promising approach here is the so-called conjugated node 
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analysis [10].  The relations found in the present paper between the mechanism 
complexities o f  the different types, classes, subclasses, etc., could also be very instruc- 
five. Further  work to develop an entire network of  reaction mechanisms is in progress, 
along with the extension of  the present results to all linear mechanisms having four 
reaction routes and up to six intermediates, as well as having irreversible elementary 
steps and pendant  vertices [40].  
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